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Correlated P-wave pairing theory for Fermi systems. 
Application to liquid 3He 

P Hatzikonstantinout and J M Irvine 
Department of Theoretical Physics, The University, Manchester, M13 9PL, UK and 
Science Research Council, Daresbury Laboratory, Warrington, WA4 4AD, UK 

Received 19 January 1982 

Abstract. A variational theory is presented for the isotropic triplet pair-condensed state 
of liquid 3He. Using a correlated pairing wavefunction we express the expectation values 
of the required quantities in terms of the diagonal and off-diagonal matrix elements of 
the Hamiltonian and unit operators with respect to a correlated basis of normal wavefunc- 
tions. The correlated basis consists of Slater determinants modified by a Jastrow correlation 
factor which incorporates the strong short-range correlations induced by the interparticle 
potential. Our formalism has been developed within the weak-coupling approximation. 
The study of the instability of the normal state with respect to the triplet pair-condensed 
state is achieved via an exact criterion. This criterion has been expressed in terms of 
normal-state quantities which have been evaluated within the correlated basis functions 
scheme with the accuracy of the Fermi hypernetted chain approximation. Our numerical 
calculations indicate an instability of the normal ground state with respect to the 'Po 
superfluid state but at too low a density. 

1. Introduction 

Since the BCS theory (Bardeen et a1 1957) was introduced to describe pairing correla- 
tions, which lead to an isotropic superfluid state, several attempts have been made to 
apply the theory to strongly interacting fermion systems such as neutron and nuclear 
matter (Tamagaki 1970, Cooper et a1 1959) and in particular liquid 3He (Emery and 
Sessler 1960, Brueckner et al 1960). 

These early studies led to the conclusion that for liquid 3He, a condensation into 
higher states of the relative two-body orbital angular momentum L is more favourable 
than the isotropic spin-singlet S-wave state of the ordinary BCS theory. This result is 
a consequence of the short-range repulsive hard core of the two-body potentials, 
which describe the interactions of the system. The investigation of the higher spin- 
triplet P-wave states resulted in the BW (Balian and Werthamer 1963) and ABM 

(Anderson and Morel 1961, Anderson and Brinkman 1973) pairing theories which 
correspond to the condensed B and A phases of 3He respectively. 

The main problem, which arises in the superfluid description of a strongly interact- 
ing Fermi system, is that the pair-condensed model wavefunctions do not include the 
short-range correlations which are necessary to renormalise the short-range repulsive 
hard core of the potential. Yang and Clark (1971) introduced a correlated pair- 
condensed state consisting of a pair-condensed model function which describes the 
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'So pairing and a correlation operator which incorporates the correlations induced by 
the short-range interactions. The cluster expansion of the energy is based on the 
expansion of the correlation operator, assuming that in low-density nuclear matter 
the volume of the hard cores of the two-body potentials constitutes a small fraction 
of the total volume. The fact that the volume of the hard cores is a large fraction of 
the total volume in the case of liquid 3He led Paulick and Campbell (1977) to adopt 
a scheme which includes an analysis of the pair-condensed model functions, in addition 
to that of the correlation function, in their study for the isotropic BCS and BW pairing, 
which describe the pair-condensed phases of liquid 3He. 

Most recently Krotscheck and Clark (KC, 1980) have developed a variational 
theory where the matrix elements of the desirable quantities with respect to a correlated 
pair-condensed model function are expressed in terms depending on diagonal and 
off-diagonal matrix elements of the Hamiltonian and unit operators with respect to 
a correlated basis of normal states. The treatment of these terms has been formulated 
within the correlated basis function (CBF) framework (Krotscheck and Clark 1979, 
hereafter referred to as KC-11) adopting the Clark-Westhaus (1966) form for the 
expectation value of the kinetic energy operator. For the evaluation of these CBF 
quantities they employ the Fermi hypernetted chain (FHNC) approximation, assuming 
a simple parametrised two-body Jastrow correlating function (Schiff and Verlet 1967, 
Iwamoto and Yamada 1957, Aviles et a1 1958). 

The advantage of this theory of pairing phenomena using pair-condensed model 
functions within the CBF formalism resides in the fact that for the calculation of the 
CBF quantities, any kind of correlation operator or cluster expansion can be used, 
without changing the formalism which describes the pairing effects. 

The purpose of this work is the study, in the same spirit, of a variational theory 
for the spin-triplet P-wave pairing state incorporating a correlated pair-condensed 
model function. The introduction of a correlation factor into the trial wavefunction 
permits the application of the weak-coupling approximation in the evaluation of the 
superfluid energy and the derivation of the gap equation. The resulting diagonal and 
off -diagonal matrix elements of the Hamiltonian and unit operators are evaluated 
within the CBF scheme presented in Hatzikonstantinou and Irvine (1982) (HI) and 
KC-11 respectively. We presume further that in deriving the required CBF quantities 
we will concentrate only on states differing in exactly two single-particle states which 
correspond to a single Cooper pair of particles. The evaluation of these quantities is 
performed via the FHNC approximately (Krotscheck and Ristig 1975, Krotscheck 
1977a, b, Fantoni and Rosati 1975) which permits an infinite partial summation of 
cluster terms obtained from the cluster expansion of these quantities. 

Finally we proceed in a numerical investigation of the instability condition of the 
normal phase with respect to 3P0 pairing in liquid 3He, evaluating the required 
quantities in conjunction with a FHNC optimisation scheme which minimises the normal 
ground-state energy. 

2. Correlated model function for Cooper pairing in triplet states 

Let us consider the triplet P-wave state 
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where 7 is the normalising factor g,,(k) = v & u u ' / U k u u '  and the operator u l u  creates a 
particle in the orbital (k ,  (T). Adopting the appropriate forms of vkuu, and ukU", the 
ket (2.1) may describe the special cases of ABM and BW pairing. For the treatment 
of the triplet pairing we adopt a generalised form of (2.1) which is given by KC, 

are determined by the decompositions 

L1uZ(k) = f 4c21SMS)(SM~MLIJMJ)YL,Mr(k^)Xh(k) 
(2.5) 

= ii XA (k )At lC2( l )  

where fj is the normalising factor, k̂  is the unit vector along the k vector and A = JLSMJ. 
For the triplet P-state the matrix (2.4) may be defined as 

=C &(k), J = 0, 1 ,2 ,  (2.6) 

where the matrices A J ( k )  are given in appendix 1. Considering that the triplet state 
corresponds to an odd L and the parity of spherical harmonics is (-l)', we have 
A ( - k )  = - A ( k )  which, incorporated with the requirement of the time-reversed invari- 
ance of (2.2) 

J 

(2.7) l+u,+u AzIu2(-k -(TI, - c 2 )  = (-1) 2Au1u2(k9 (TI, ( ~ 2 1 ,  

is equivalent to XfLs,MJ (k) = (-l)J+MJxJLS,-MJ and yields the relation 

(2.8) 2+u,+u Ab,,,(k, --cl, - c 2 )  = (-1) 2Au1u2(k vi1 ~ 2 ) .  

From the unitarity of (2.4) we have the additional relation 

IArr(k)12+ IA?i(k)12 = 1. (2.9) 

[Ll(k), LT(k)l-lO) = IO), (2.10) 

IILZ(k), G(k)l-IO) = IO), (2.11) 

[L , (k ) ,  J 5 2 G ) l -  = 0. (2.12) 

The Fermi operators L ; ( k ) ,  L: (k)  and their complex conjugate satisfy the relations 

The subscript (-) signifies commutation relation. 
The 3PJ model function, which describes adequately the superfluid state of a weakly 

interacting system, is a superposition of states with different number ordering. To 
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consider a variational superfluid theory appropriate for strongly interacting fermion 
systems we introduce the correlated pair-condensed state 

(2.13) 

where FN(l, 2, . , . , N )  is an N-body translationally invariant correlation operator and 
{IO:))} is a complete orthonormal set of N-particle Slater determinants which are 
labelled as m ( N )  = {ml, m2, . . . , mN}.  The projection of the pair state IOs) on the 
Hilbert spaces of the N particles permits the expression of certain quantities in terms 
which can be evaluated in configuration space. The operator F N  satisfies the property 
FN(l, 2, . . . , N )  +FA(l, 2, . , . A)FN-A(A + 1, . . . N )  setting the configuration vectors 
ri of each particle of the set N -A separately to infinity. If the correlation operator F 
had been expressed in the occupation number representation it should obviously 
contain the same number of creation and annihilation operators and should commute 
with the number operator, 

(2.14) 

Thus we conclude that the dispersion in the number ordering of FIO.,) may be attributed 
entirely to the superfluid state laS). 

It is evident that the lqs) state includes off-diagonal long-range order (ODLRO) in the 
lowest two-body density matrix, which is an important characteristic of the superfluid 
states as has long been suggested by Paulick and Campbell. 

In the occupation-number representation an N-body Slater determinant takes the 
form 

(2.15) 

where the pair-creation operator b: is defined as 

6: = c ~ u l ~ z ( ~ ) ~ ~ u l ~ ~ k ~ z  = L : ( k ) + L : ( k )  (2.16) 

with the property b k 6 i 2 / 2  = b:. The ground state \Ob") is obtained from (2.16) for 

The probability for occupation of a pair of single-particle states ka, -ko' obtained 

(2.17) 

Hence in the uncorrelated triplet pair-condensed state of the system, the expectation 
value of the operator (2.14) is 

m 1 u 2  

.k s kF. 

by virtue of (2.2) is given by 
2 (4s(a=kua+kur14s) = u k *  

3. Criterion of superfluidity 

(2.18) 

One of the most important quantities which has to be evaluated is the stability criterion 
which expresses the stability or instability of the normal state with respect to the 
formation of the Cooper pairs. 
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In this section we review the main steps for the calculation of the stability criterion 
in order to fix the formalism and to define some quantities which will be used later 
in our work. 

The stability (or instability) condition depends on the behaviour of the functional 
derivative with respect to the real angles f#Ik : 

(3.1) 

The notation l o  means that the parameters u k  and v k  are replaced by their expressions 
in the normal state U k ’  = u k  and v k  = 6 k  = 9 (k’), where 

In (3.1) p is the chemical potential, a Lagrange parameter which ensures that the 
expectation value of the operator N is equal to the number of particles in the system 
A and H is the Hamiltonian operator. 

A A h2 H = --V:+ V(ii) 
i=l 2m i < j  

(3.3) 

where V(ii) is a two-body potential. In the limit lo, p becomes the chemical potential 
of the normal state. 

The operation of the first- and second-order derivatives on the superstate I@,) 
yields the relations 

(-2s kp + b p h )  (9 LA’ >, k,  P kF, 

(-2&p+b:b:)\4bA’), k , p  >kF. 
I 4 S ) l O  = -bk’bpl4bA’), k > kF, P 9 kF, (3.5) 

s2 
8 4 k  - i  8 4 ~  

The derivatives (3.4) and (3.5) are expressed as linear combinations of 4 and 16 states 
respectively which corresponds to A + 2, A or A - 2 particle systems. Using (3.4) and 
( 3 . 9 ,  equation (3.1) takes the form 

k ,  P kF, 
(A-2) 

(4bA’lb:Fi-2[HA-2-HO0 pA-2bp14bA))(lb$))-1 +cc, 

s k p  = -(4bA’IFi [HA -Hb$’lFAbk+bp14)bA))(lb$))-l + cc, P SkF,  k kF, 

(4bA’lbkFi+Z [ H A + 2 - H b $ + 2 ) y A + 2 b i  14bA’)(lb$’)-’ +cc, k ,  P > kF. 
(3.6) 

Taking the A,, factors outside the integrals in equation (3.6), we express the remaining 
matrix elements in terms of the quantities 

I 
(3.7) 

(3.8) 

(3.9) 

which are evaluated with the following model states corresponding to the appropriate 
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particle number A : 

IN) ( A )  IN) N = A - 2 ,  1 4 m  ) = a k u l a - k o z l 4 O  ), I 4 n  )=apu1a-puz14LA)) ( k , p  S ~ F ) ,  

N = A ,  i4'm"')=14bA)), 14" ) = ~ k u l a - k o z a p o l a - ~ z l ~ O  ) ( k  > k F , P  S k F ) ,  

N = A + 2 ,  l d m  ) - a k u l a - k u z / ( $ O  ), ldn )=apu1a-puzIdo ) ( k , P > k F ) *  

( N I  + + (A) 

(NI - + + (AI (NI + + (A)  

(3.10) 

The configurations m, n, either of which may coincide with the set of the filled 
Fermi sea 0, differ from one another in two single-particle states, the pairs of 
single-particle states ( k ? ,  -ki) and ( p t ,  -pi)  respectively. Hence the quantity s k p  

can be written in the form 

Detailed studies of the diagonal and off -diagonal terms contributing to the brackets 
of (3.11) presented in HI indicate that in low cluster order they behave like A' and 
A-'  respectively in the given number of particles. 

Using the definition of the normalisation integrals Izl = exp G(,N,) and following 
the formalism of the paper KC-11, we have for N = A  + 2 

= 2(8G (k ) - 8G ( k ~ ) )  (3.13) GLA,'~' - ~::+21 

so that 

Z',q,"' = exp [SG(k)+SG(p)-2SG(kF)+2(dG~o/dA)+O(A-1)] .  (3.14) 

The function G E 1  is of order A in the given number of particles and the differences 
(3.13) behave like O(Ao).  The quantity SG(k)  is determined by the equation 

S G ( ~ ) = A - ~  ~ SGoo(o) exp (ikrii) dri dri. 
8l(kFrg) 

(3.15) 

Similarly considering the cases N = A  -2,  A and neglecting terms O(A-'), we arrive 
at the unified expression for the three values of N 

z!? = Z ( k ) Z ( p ) ,  (3.16) 

Z ( k )  = exp{(l-277(k))[SG(k) -SG(kF) +dG~o/dA]}. (3.17) 

The factor ZKA in equation (3.11) may be written out of the summation over the 
spin states in which we keep only contributions of order A-'. 

The diagonal and non-diagonal contributions to s k p  are given by 

c A ~ ~ ~ ~ ~ ~ ~ ~ A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  -HLG*~)I  = 2 c i ~ , ~ , ( k ) i ~ ~ ~ ( k ) - ~ i  = 4 1 ~ ( k ) - ~ 1  
U l U 1 '  uu' 
u2-2' 

(3.18) 
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and 

p k p  =+ c A~lul,(k)Au2u2,(p)q(k, p), 

q (k, p )  = H“, - Hi:”%’ + cc 

(3.19) 
U101‘ 
UZU2’ 

(3.20) 

(3.21) 

respectively. The single-particle (hole) energies E ( k )  (Tan and Feenberg 1968), the 
chemical potential p and the quantities @”,, and Nm,, are defined as follows: 

or 
p -1 - ( N I  

kp - 2( W m c  + (IS ( k  ) - CL I + 1 E ( P - CL \INK’ + C C )  

(3.22) 

(3.23) 

(3.24) 

Hb?”’ -Hi$*” = 2 1 ~ ( k ) - p I ,  (3.25) 

(3.27) 

(3.28) 

+HL;) -2HbT’)Nz’  = ( l ~ ( k ) - p l + l & ( ~ ) - ~ l ) N ~ ’ .  (3.29) 

The off-diagonal quantities W‘,“,‘ and N z ’  are the two-body matrix elements 

W z )  = ( k ~ i ,  -kUi’l W ( 1 2 ;  1’2’)1p~2, - ~ ( ~ 2 ’ ) a ,  

N z )  = ( k r i ,  - k ~ l , I N ( 1 2 ;  1’2’)lp~2, - p ~ z , ) ~ ,  

(3.30) 

(3.31) 

of the non-local four-point operators W ( 1 2 ;  1’2’) and N ( 1 2 ;  1‘2’). The structure of 
these operators has been studied in detail in HI. The functions Wm, and NE’  are to 
be written in a more elaborate form later in this work. In the final formulae the 
superscript N may be dropped, because for systems with A or A f 2 particles, where 
A is very large, the differences are of the order O(A-2). 

s k p  = 2 2  ( k  )z ( P  ) [ 4 1 E  ( k  ) - P b k p  + p k p  ( 1 - 8 s  )I( 1 - 277 ( P  ) ) ( I  - 277 ( k  1). (3.32) 

In the evaluation of the diagonal and non-diagonal contributions to (3.32) we keep 
only the leading terms which behave like O(A-’).  Introducing the partial-wave 
decomposition 

Finally the quantity S k p  can be written 

into (3.32), we obtain for the quantity within the brackets 

k ) ~ X A  ( p [ 41s ( k  - p I8kp8hh’  + A?~ul~(6A&2f(fi)q (k ,  p ) 1. (3.34) 
kphh’ UlU1’ 

U2‘TZ’ 



3634 P Hatzikonstantinou and J M Iruine 

Hence the criterion for the instability of the correlated normal state against the triplet 
pairing state is given by the angle-averaged condition for each A state. 

1 I Ll, A ~ ~ u l , ( ~ ) A ~ z u z , ~ ) 4 ( k ,  p )  dfik dfipIk=P=kFEPi:' <o.  ( 3 . 3 5 )  

Obviously for k = p  we have Skp > 0 which indicates the stability of the normal state. 
For central potentials the matrix elements Pi:' will be diagonal otherwise we have 
to consider coupling states of the form 3P2 - 3P2, P2 - 3F2 and 3F2 - 3F2. 

U2UZ' 

3 

4. Condensation energy 

An exact treatment of the expectation values of any operator with the superstate 
(2.13) is not possible as in the case of the stability condition which is evaluated at 
the normal values of the u k  parameter. Nevertheless a suitable approximation has 
been suggested by some authors (KC 1980, Kennedy 1968) which consists in the 
evaluation of the gap function using normal-state single-particle energies. This 
decoupling approximation, which will be discussed further later, yields a scheme where 
the expectation value of an operator is approximated by a finite number of terms. 

Let us consider a translationally invariant operator 8 which conserves the number 
of particles in the system. Then we have 

For reasons explained in § 2 we restrict the series expansion of (4 .1)  to terms which 
correspond to pairs m, n differing at most in two single-particle states. Consequently 
in (4.1) for each configuration I@:') the sum over n is reduced to the set of configur- 
ations 

{I4 !?), b : b P l 4 3 }  (4 .2 )  

where the vector p belongs to the set m but k does not. 

set (4.2) are determined by the relations 
The projection coefficients of the superstate IQ) along the normal states of the 

and 

(4.3) 

(4.4) 

where A represents the complementary set of m. That is, each vector k present in 
m is not present in rii or vice versa. Substituting (4 .3 )  and (4.4) into (4 ,1 ) ,  we arrive 
at the relation 

( ~ , / F + ~ F I ~ J =  ( f i u : ,  ~ ~ ~ : , , ( ~ w ' I F ~ N F N ~ + " " ) )  
Nm k '  k "  

where p and k belong to the sets m and A respectively. 
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A satisfactory approximation of the condensation energy 

may be achieved applying the equation (4.5) with the appropriate operator for the 
evaluation of the superfluid energy E,. Employing the decoupling approximation and 
expanding the functions of (4.3, which depend on the parameters V k  and U&, keeping 
only contributions up to second order in v t  -6: and of first order in upv&k,i, we 
arrive at the equation 

(4.7) 

with Eo = HOO. Carrying out the summation over the sets { m }  for the terms which 
involve a single sum over p ,  k and a double sum over p and k, we consider the 
following corresponding sets of states: 

(9 

(iii) 

{I4 bA)),G I4 LA' >I, 

{Id LA'), b f 14 LA'), b k  14 LA' >, bfbk 14bA' >I* 
(ii) {bLA)), b k / 4 L A ) ) } ,  

(4 .8)  

After some manipulations similar to those performed in the derivation of the stability 
criterion we finally obtain 

+ 4  1' u p v i v k u i z ( k ) Z ( p )  
k p  

{ w k p  +[(I -27 ( k ) ) e ( k ) + ( l - 2 q ( P ) ) & ( P ) f l k p }  (4.9) 

where w k p  = rt,, and 
(3.27).  The prime indicates that k # p. 

state lYs) obtained with the above technique yields the formula 

=&p =Nmn are determined by the equations (3.26) and 

with the correlated superfluid The expectation value of the number operator 

+ 4  1' U P V : V k U i z ( k ) Z ( p ) [ ( l - 2 r l ( k ) ) e k  +(1-2r l (P)kpf lkp  (4.10) 
0 

where A is the number of particles in the ground state. Following the single-particle 
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energies (3.22), we define the single-particle function ek via 

2ek =( f i )F+"- ( f i )$=  2e(k -kF), k >kF, (4.11) 

2ek = ( f i ) b ~ ' - ( f i ) ~ , " - ' ) = 2 e ( k , - k ) ,  k S kF, (4.12) 

where 8 is the Heaviside unit step function, 

( f i > m n  = ( ~ m I ~ + f i ~ I ~ " ) / [ ~ m m ~ " " ~ " ~  (4.13) 

In order to ensure particle number conservation during a variational minimisation 
and ( f i )oo  = A .  

of the superfluid energy, we introduce the quantity 

Ec = (4sIH - pNl4s)/(4sl4s) 

= E o - / . ~ A + 4 x  ( l - v ( k ) ) ~ i Z ~ ( k ) [ ~ ( k ) - / . ~ ]  
k 

where P k p  is defined by equation (3.21). The Lagrangian multiplier p is varied until 
the condition 

N s = A  (4.15) 

is satisfied. 

5. Gap equation 

It is evident that a minimum of the superfluid energy, preserving the number of 
particles, is achieved varying the functional &(ut, {X,}) E,(!&, A&), Ar&(k)) with 
respect to z)k and the variables Att(k) ,  At&(k). 

The optimal functions u k  and u k  are determined by the variational equations 

2 ~ : Z ( k ) l ~ ( k ) - p l = - 2  1 U,U:UkU;' (U: -Ui)z(p)Pkp, 

2~ i2 (k)lE (k ) - p 1 = -2 1 U lUpU i l U k  (U - U :)z (p)pk,,, 

(5.1) 
p # k  

(5.2) 
p f k  

fork s kF and k > kFrespectively. Multiplying (5.1) and (5.2) by U; and U: respectively 
and dividing both equations by ukuk, we arrive at the unified gap equation 

2Uk~kZ(k)lE (k)-/.L I = -(ut - u : ) b ( k )  (5.3) 

where the 'gap function' A ( k )  is defined as 

(5.4) 
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After some manipulations by means of equation (5.3), we derive for the probability 
amplitudes v 2 and U 'k the expressions 

The optimal angle ( b k  is given by 

The derivation of an elaborate formalism for the determination of gap function is 
achieved as follows. We define the matrix 

where 

(5.11) 

(5.12) 

The matrices A,&) and A ( k )  by means of the relations (5.5) and (5.6) satisfy the 
equations 

(5.14) A,(k)A+(k) = A(k)A:(k) = D ( k )  XI 

where the diagonal element D ( k )  is given by 

D 2 ( k )  = 5 Tr(A:(k)As(k)) = A&(k)A&) + A{Lk)Ati(k). (5.15) 

The relation (5.14) means that the A&) can be factorised into 

A,(k) = D ( k ) A ( k ) .  (5.16) 

Then by means of (5.7), (5.8), (5.12) and (5.16) we arrive at the coupled nonlinear 
'gap equations' 

where crlai corresponds to the pairs (ff) and (TJ). The function E,(&) is determined 
by equation (5.9) where 

A(k) = Tr(A,(k)A'(k)) = 2D(k) .  (5.18) 

The element D ( k )  is given by (5.15) with the additional relations 

A;Lw = A&) (5.19) 
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and 

(5.20) 

Minimising the functional E,, we have derived the system of coupled equations 
(5.17) which, together with the equations (5.9), (5.15), (5.18), (5.19) and (5.20) serving 
as definitions, yield the determination of the anisotropic gap-function A ( k )  via (5.18). 
In our scheme the interactions between Cooper pairs have long been neglected as a 
consequence of adopting the decoupling approximation. With the derivation of the 
'gap equation' we have a theory where the main ingredients are the pairing matrix 
elements q ( k ,  p ) ,  the single-particle energies E ( k )  and the normalisation factor Z ( k ) .  
The construction and evaluation of these quantities is demonstrated in the next section. 

6. Evaluation of normal-state quantities 

In the preceding sections we have derived a formalism where the off -diagonal and 
diagonal quantities W,,, N,, and H,, -Hoe represent matrix elements with respect 
to a basis of correlated normal states. Considering a state-independent Jastrow 
correlation factor, these CBF quantities may be expressed in more elaborate forms 
following one of the alternative CBF techniques developed by us (HI) and Krotscheck 
and Clark (KC-11) within the CBF framework. These techniques, which have been 
developed adopting the Jackson-Feenberg and the Clark-Westhaus forms of the 
expectation value of the kinetic energy, respectively, express the required CBF quan- 
tities in terms of compound-diagrammatic functions which may be evaluated within 
the accuracy of the Fermi hypernetted chain approximation schemes (FHNC). 

Within the FHNC theory the set of functions Nab ( r 1 2 )  is constructed which represent 
the sums of nodal, non-nodal and elementary diagrams with ab = dd ,  de and ee in 
accordance with whether none, one or two exchange lines are attached to its internal 
points 1, 2. We also construct the sum rab( r12)  of nodal and non-nodal diagrams. Of 
these functions the most prominent is the sum hd(r12)=rdd( r12)  of diagrams which 
hereafter will play the role of the dressed correlation function (line) replacing the 
bare correlation function (line) h ( r i i )  = f 2 ( r i j )  - 1 in the diagrammatic representation 
of the cluster series of the required quantities. Following the formalism of HI, an 
exchange function (line) represents the factor -u-'l(kFrii) = -jl(kFrij)/(uUkFrij) (U is the 
degeneracy of the system). The set of functions so constructed which are involved in 
the FHNC calculations may be evaluated following one of the schemes presented by 
Krotscheck-Ristig (1975) and Fantoni-Rosati (1975), or solving the appropriate FHNC 
equations in conjunction with the equations obtained variationally within an optimisa- 
tion scheme for the normal ground-state energy (Owen 1979, Lantto and Siemens 
1977). Another quantity involved in our formalism is the sum X,, ( r 1 2 )  of all non-nodal 
diagrammatic contributions to g(r12)  with a single exchange path joining the points 
1, 2 including the term u- l l (kFrIZ) .  The function Xcc(r) is evaluated by solving the 
appropriate set of FHNC integral equations. After the construction of the required 
FHNC functions we turn our attention to the evaluation of the required CHF quantities. 

In accordance with our CBF scheme presented in HI the off-diagonal quantities 
N,, and W,, are given by the relations 

N,, = X i t n  ( m  1 m 2 IN ( 1 2 ; 1'2') In 1n Ja, (6.1) 
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w,, =~;; l t ,{(mlm2J ~ ~ ( 1 2 ;  1’2’)(n1nz)~ + J m ,  +b[u(ml)+u(m2)+u(nl)+u(nz) 
+ W‘”(ml) + W‘”(m2) + W(”(n1) + W“’(n,)](mlmzlNE(l2; l’2’)1n1nda}, (6.2) 

where 

J,, = (h2/8m)  I V:(m1mzlNB’(12; 1‘2’)lnln~)a dr2 drl, (6.3) 

(6.4) 

(6.5) 

X,,, = [(l  -*cc(md)(l -*,,(m2))(1 -*,,(n))(l -zcc(n2))1”2, 

U ( m )  = Cc ( m  )/U - R C ( m ) ) .  

Studying the diagrammatic decomposition of the four-point operators NE( 12; 1’2’) 
and WB(12;  1’2’) which consist only of basic diagrams, it has been shown that they 
are constructed from local and non-local classes of diagrams. The superscript ‘B’ 
indicates the ‘basic’ character of these quantities. Details about the structure of these 
operators have been given in HI. The local parts of the operators NB(12;  1’2’) and 
WB(12;  1‘2‘) are NB(12)  = hd(r12) and WB(12)  = hh(r12) respectively. The function 
h&(r12) is called the dressed effective potential and the prime denotes that the sum 
h&(r )  is obtained from the diagrammatic contributions to the sum hd(r)  replacing, in 
turn, each line h(r )  with a graphical element which represents the two-body effective 
potential 

w2(i j )  = - (h2/4m)v? 1nf2(ij) + V( i j ) .  (6.6) 

The function h& is determined by the set of integral equations 

h & ( r )  = [hd(r)+ 1l [w2(r) fNhd(r)+E&d(r) ] ,  (6.7) 

with 

hd(r) =Ndd(r) +Xdd(r) (6.9) 

P (  k ) = *dd (k )( 1 + *ee (k )) + 2*& (k ) -*;e (k ), (6.10) 

where the tilde denotes the Fourier transform multiplied by the density p. The 
quantities &,(k), &e&), Zee(k) and E & d ( r )  are determined either by keeping the 
leading terms in suitable diagrammatic expansions or by means of additional integral 
equations within the FR-FHNC approximation. These functions can also be evaluated 
in conjunction with the appropriate equations obtained from a variational scheme. 

In our method the quantities J,, and W:!) (HI) are expressed as cluster series 
with terms which do not include the dressed two-body effective interaction h& ( r ) .  
Finally the quantities X:,  ( r )  and *Lc ( m )  are determined by the set of coupled linear 
equations 

XAc(r) = ~ ~ ~ ~ ~ ~ ~ c c ~ ~ ~ + E c c ~ ~ ~ - u ~ ’ ~ ~ k ~ ~ ~ l + h ~ ~ r ~ [ N ~ ,  (r)+ELc(r) l+EL(r)  (6.11) 

(6.12) &(&) =R:, (k )[ ( l  -V-ll(LFr))/(l -*cc(k))2- 11, 

where v-’l(kFr) = 8(kF-k) .  
Again the sum Ecc(r) is the ‘cc’ analogue of Edd(r). Using the functions &(k) 

and X,, (k) so determined, we may evaluate the single-particle energies E (k) and the 
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quantity SG(k) given by the relations 

(6.13) 

(6.14) 

(6.15) 

The constant a. can be determined in principle from the chemical potential of the 
normal state. The normalisation factor Z ( k )  is also evaluated by means of equations 
(3.17) and (6.15). 

Finally, evaluating the required FHNC quantities, we can adopt a scheme maintain- 
ing the Fermi cancellations, which occur between the diagrammatic contributions, 
keeping all diagrams with the same number of dressed correlation lines but different 
number of particles. 

7. Application to liquid 3He 

Studying the condition for the existence of an instability corresponding to 3 P ~  pairing 
in liquid 3He, we performed numerical calculations for the evaluation of the diagonal 
matrix elements PkF determined by (3.35) with S = 1 and L = 1. 

Applying the CBF-FHNC method which has been developed in the preceding sections 
and defining 

(7.1) 

as well as J A ( k F )  = (J)tFSAA, and N(kF) = (N)iFaAA., the diagonal matrix element PkF 
takes the form 

(7.2) 

In evaluating the quantities WA(k) and N A ( k )  we have considered only the local 
portions of WB(12; 1’2’) and NB(12; 1’2’) which are represented by the dressed 
effective potential hh(12), defined by the set of equations (6.7) and (6.8), and the 
dressed correlation function hd( 12) respectively. These dressed functions have been 
calculated within a FHNC optimisation scheme developed by Owen (1979) for the 
minimisation of the ground-state energy. The function Zcc ( k )  has been determined 
solving the appropriate set of coupled FHNC equations by means of an iteration scheme. 
The quantity R:,(k) has been evaluated by solving the set of equations (6.11) and 
(6.12) using the standard matrix inversion technique in momentum space. 

In our calculations we have totally ignored the sums of the elementary diagrams 

Finally, evaluating the quantity J A  (k), we have considered only one diagram 
resulting from consideration of the local portion of the function NB(12; 1’2’) in 
the equation (6.3). The diagonal element W$; has been evaluated from all the 
diagrams with no more than two dressed correlation lines. The analytic form of WL’), 
expressed in the momentum space, is given in appendix 2. 

Edd(r), Ecc(r) and ELc(r)* 



P-wave pairing for Fermi systems 3641 

In order to compare our resullts with those obtained by KC, it is more convenient 
to express our numerical results in terms of the dimensionless quantities 

S w ( A ) = N o n [ W A ( k ~ ) + J * ( k ~ ) ] ,  (7.3) 

S P ( A  1 =NonP:,, (7.4) 

where No = m*kF/2r2h2 and the effective mass m* is defined by 

The quantity & ( A )  has been constructed as the analogue, in our formalism, of the 
quantity -N(O)V in the BCS weak-interaction theory where N(0) = N o  represents the 
density of states and V is the strength of the pairing interaction. 

Studying the 3 P ~  pairing, we have performed numerical calculations using the 
Lennard-Jones potential with the de Boer-Michels parameters and the Frost-Musulin 
potential which are denoted by V(u)  and V(mD1) respectively. These potentials 
have the analytic forms 

(i) v ( u )  = vo[(a/r)'2-(a/r)6] (7.6) 

with Vo = 40.88"K and (J = 2.556 A. 

(ii) V(mD1) = -vO[l + c ( l  -x-')] ec('-x) ( r  Q ro), 

= - V,(C,r + Csr - 8 )  ( r  ' ro), (7.7) 

withx=r/rm, Vo=12.54"K, c=8.00877, V1=7250.00K, Ca=1.41& Cg=3.82A, 
rm = 2.98 A and ro = 3.51078 A. 

As we have mentioned in 0 3, an instability of the normal state in favour of the 
Po pairing is indicated when the parameter SP(~PO) has a negative sign within the 

density region which is studied here. The numerical calculation of the parameters 
Sw(3P0) and sp(3P0) is subject to the accuracy and the uncertainties which are involved 
in adopting the FHNC scheme. 

Our numerical results for these parameters are shown in tables 1 and 2 for the 
V(u)  and V(mD1) potentials respectively. From these tables we observe that calcula- 
tions with the V(mD1) potential, which has a stronger attractive part than V(u),  
show a tendency towards 3P0 pair condensation at higher density values. Our calcula- 
tion is in excellent agreement with those performed by KC for the 3 P ~  pairing using 

3 

Table 1. Liquid 'He results for V ( u )  potential. 

P (A-') m*/m sw('pO) w3p0) u ( k d  l--&(kF) 

0.008 1.01 -0.005 -0.011 0.00 0.81 
0.010 1.03 0.004 0.024 -0.06 0.79 
0.012 1.04 0.011 0.067 -0.15 0.63 
0.014 1.05 0.016 0.118 -0.25 0.57 
0.016 1.05 0.022 0.193 -0.37 0.52 
0.018 1.05 0.026 0.256 -0.45 0.48 
0.020 1.05 0.030 0.337 -0.56 0.45 
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Table 2. Liquid ’He results for FDDI potential. 

0.008 0.084 0.013 -0.032 0.04 0.87 
0.010 1.023 -0.000 0.005 -0.02 0.74 
0.012 1.041 0.008 0.050 -0.11 0.65 
0.014 1.049 0.014 0.104 -0.26 0.50 
0.016 1.052 0.021 0.183 -0.30 0.52 
0.018 1.053 0.025 0.249 -0.40 0.40 
0.020 1.052 0.029 0.338 -0.51 0.45 

~~ 

their FHNCIO, FHNC/C and FBGYIC approximations and predicts a negative SP(~PO) 
only at densities smaller than p = 0.008 A-3. This result contradicts their FBGY/O 
method and the experimental indication that the instability of the normal state against 
the triplet BW pairing takes place just below the equilibrium density po = 0.0164 A-3. 
Although our CBF-FHNC method does not give an adequately satisfactory description 
of the 3 P ~  superfluid state of liquid 3He, we believe that an improvement can be 
achieved within our scheme by introducing non-local contributions to W A  (kF) and 
JA(kF). In tables 1 and 2 are also shown the ratio m*/m and the functions u ( k F )  and 
1 -&(kF) which enter the calculation of PtF.  

The ratio m * / m  has a predicted value near to unity in comparison with the 
experimental value 3.08. This substantial difference is a consequence of the fact that 
our trial wavefunction for the normal ground state incorporates a Jastrow state- 
independent correlation factor. 

There are several explanations of the discrepancy between our calculation and the 
experimental results. The most significant is that our wavefunction does not describe 
spin-density fluctuations, so that there is no part of our effective pairing interaction 
associated with exchange of spin fluctuations. On the other hand, the deficiency of 
using momentum-independent correlation can be rectified to some extent within a 
CBF perturbative formalism from the higher-order momentum-dependent correction. 
A substantial improvement of our calculations may be achieved using state-dependent 
correlation functions which incorporate three-body interactions and the dominant 
effects induced by the backflow behaviour of 3He atoms (Schmidt and Pandharipande 
1979). We also believe that the omission of the elementary diagrams as well as the 
uncertainty of the interparticle potential used will not explain a substantial part of 
the missing effective pairing interaction. 

A refinement of the present formalism is that developed by Krotscheck et a1 (1981) 
where perturbation corrections have been generated to the superfluid ground-state 
energy. In their scheme, the superfluid state is expressed in terms of correlated basis 
states which are related by generalised creation and annihilation operators. However 
their effective pairing interaction does not generate the observed P-wave pairing and 
yields results similar to ours mainly for the reasons given above. 

A numerical estimation of the normalisation factor Z ( k ) ,  providing that the deriva- 
tive dGk?/dA is given by the equation (A2.3) in appendix 2, indicates that for small 
densities it remains near unity. However, as the density increases the deviation of 
Z ( k )  from unity is substantial, so that an attempt to estimate the gap function A(&) 
by solving the system of gap equations (5.17) and to calculate the condensation energy 
is problematic. In this case we believe that it is necessary to devise an optimisation 
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scheme, where the correlation function will be evaluated by minimising the superfluid 
energy. 
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Appendix 1. 

The function A,@) defined by equation (2.5) which corresponds to the 3 P ~  pairing 
(S = 1, L = 1) represents a decomposition over the labels J and MJ. Defining XJ,~,  = 
X, (k) and substituting the Clebsch-Gordan coefficients, we arrive at the following 
representation for the &(k) matrices. 

(i) 3 ~ 0  pairing. 

(Al . l )  

(ii) 3 ~ 1  pairing. 

). (A1.2) 
(xl1Ylo+xloY1-l)/J2 &-XllY11 +X1-1Y1-1) 
~ ( - x l l Y l l + x l - l Y l - l ~  -(xloY11+x1-1Y1o)/Jz 

A I = (  

(iii) 3 ~ 2  pairing. 

1 1 1 
X2t yi 1 + - ~ 2 1  Yio + - x z o  ~i - 1 $ x ~ I Y ~  1 + - ~ 2 0  Y ~ O  + ~ X Z -  1 ~ 1 - 1  ti2 46 J 3  

&=[ 1 1 ix21 Yll + ~ x * O Y l o +  $x2-, Yl-1 X2-2Y1-1+ -&x2-1 YlO+ -&x20Y11 
(A1.3) 

Appendix 2. 

The diagrammatic contributions to the various required quantities are most easily 
evaluated in momemtum space. 

The function W‘”(k) which is given by W‘”(m) with k = k, was evaluated from 
all the diagrams (HI) with no more than two dressed correlation lines and may be 
written as follows: 

(A2.1) 
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The quantity dGoo/dA was evaluated from all the diagrams contributing to Goo 
with no more than two dressed correlation lines and is given by 

(A2.2) 

(A2.4) 

dk3 
Q3(kl, k2) = J 8(k~-kd@(kF-lk3 + kll)e(kF-lk3-k21)e(kF-k3+kl -k21)* 

(A2.5) 

The function &(k) is the static structure function of the non-interacting Fermi gas 
which for k d 2kF has the form 

s ~ ( k )  = 2 k / k ~ - & ( k / k ~ ) ~ .  (A2.6) 
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